首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8261篇
  免费   833篇
  国内免费   1270篇
化学   4999篇
晶体学   42篇
力学   379篇
综合类   25篇
数学   1392篇
物理学   3527篇
  2024年   7篇
  2023年   198篇
  2022年   232篇
  2021年   244篇
  2020年   287篇
  2019年   228篇
  2018年   215篇
  2017年   299篇
  2016年   337篇
  2015年   296篇
  2014年   418篇
  2013年   564篇
  2012年   507篇
  2011年   765篇
  2010年   644篇
  2009年   910篇
  2008年   748篇
  2007年   749篇
  2006年   541篇
  2005年   386篇
  2004年   327篇
  2003年   273篇
  2002年   155篇
  2001年   150篇
  2000年   103篇
  1999年   95篇
  1998年   106篇
  1997年   117篇
  1996年   76篇
  1995年   66篇
  1994年   44篇
  1993年   46篇
  1992年   44篇
  1991年   32篇
  1990年   24篇
  1989年   28篇
  1988年   21篇
  1987年   10篇
  1986年   15篇
  1985年   16篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
氮化镓单晶衬底上的同质外延具有显著的优势,但是二次生长界面上的杂质聚集一直是困扰同质外延广泛应用的难题,特别是对电子器件会带来沟道效应,对激光器应用会影响谐振腔中的光场分布。本文通过金属有机化合物化学气相沉积(MOCVD)生长的原位处理,实现了界面杂质聚集的有效抑制。研究发现,界面上的主要杂质是C、H、O和Si,其中C、H、O可以通过原位热清洗去除;界面Si聚集的问题主要是由衬底外延片保存过程中暴露空气带来的,其次是氮化镓衬底中Si背底浓度,在外延过程中,生长载气对氮化镓单晶衬底不稳定的N面造成刻蚀,释放的杂质元素会对二次生长界面产生影响,本文较系统地阐明了界面杂质的形成机制,并提出了解决方案。  相似文献   
32.
33.
针对有机合成过程中碳及碳化物的残余,传统方法中普遍使用除碳的工艺,而很少有文章针对非晶碳的结构和形貌进行表征。为此,本文采用高尿素含量的前驱盐体系,通过在氮气保护气氛中煅烧获得AlN粉体。采用X射线衍射分析、红外和拉曼光谱分析、扫描电子显微镜和透射电子显微镜对850~1 500 ℃温度范围内煅烧获得产物的结构和形貌进行表征,对AlN合成过程中含碳产物结构形貌的变化,以及AlN和含碳产物之间相互的依存生长关系进行分析。结果表明,AlN生长的过程中伴随着无定形碳的石墨化转变,AlN颗粒的形貌也受含碳残余产物形貌的影响而出现有规律的变化。  相似文献   
34.
A copper-catalyzed synthesis of methyl esters from aromatic aldehydes in the presence of tert-butyl hydrogen peroxide (TBHP) was developed via a radical reaction mechanism. TBHP acts not only as an efficient oxidant, but also as a green methyl source in such transformation. Moreover, this method could also be efficiently extended to the methyl esterification of benzylic alcohols.  相似文献   
35.
Environmental monitoring is getting more important nowadays due to the greater stress faced by the natural environment in the era of urbanisation and industrialisation. To accomplish the task, rapid and reliable analytical probes are essentially needed to perform the monitoring at real time basis with high sensitivity and accuracy. In view of this, analytical probes developed using carbon nanoparticles are one of the latest alternatives that are proven with capability to detect various analytes of the environment. Carbon nanoparticles portray good fluorescence property that enables the integration onto optical sensing transducers. Further engineering via surface functionalization can be performed in the interest to improve the selectivity and sensitivity of the probes. There are several advantages of using carbon nanoparticles and the most significant benefit is the sustainability prospect as compared to other groups of fluorophores. Carbon nanoparticles can be synthesised with greener approach via simple pyrolysis or hydrolysis processes that involve minimum use of toxic or harmful starting precursors, besides able to tap on using renewable resources such as carbon rich agricultural wastes. The synthesis is often performed under mild condition and produces less or no side chemical products. Carbon nanoparticles by nature show low toxicity effect to the environment. This review focuses specifically of the sustainable significances, advantages and achievements in adopting carbon nanoparticles as an alternative for environmental monitoring.  相似文献   
36.
This work reports the advantages of using glassy carbon electrodes modified with multiwall carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI). The presence of MWCNTs wrapped by PEI largely facilitated the strong adsorption of uric acid (UA) and allowed its highly sensitive and selective quantification even in the presence of high excess of ascorbic acid. The selected conditions for the electrochemical sensing were 5 s accumulation at ?0.300 V under stirring and quantification in a 0.050 M phosphate buffer solution pH 7.40 by differential pulse voltammetry adsorptive‐stripping after medium exchange. The platform allowed the successful application in the quantification of UA in urine.  相似文献   
37.
We present an implementation of localization based three-dimensional super-resolution imaging on a regular microscope. We retain the original arc lamp as the photoactivation light source, and incorporate an inexpensive diode laser for imaging. As alterations to the standard microscope is minimal, this optical setup can be easily adapted in a typical research laboratory and even undergraduate teaching experiments, providing an inexpensive system for students and research scientists who require such super resolution capabilities. With this simple design, a spatial resolution of better than 40 nm at a reasonable frame rate has been achieved, adequate for most routine applications.  相似文献   
38.
A technique has been developed utilizing polarized Raman spectroscopy to measure alignment of carbon nanotubes in situ in a polymer matrix under an applied electric field. Previous studies of alignment have been restricted to optically transparent solvents or polymerized specimens that prevent accurate analyses of alignment dynamics in polymers. The effects of electric field strength on the degree of alignment and the time to achieve an aligned state are discussed. The use of in situ, real-time polarized Raman spectroscopy provides a non-invasive technique for assessing carbon nanotube alignment, which can assist in determining processing conditions to improve the mechanical and electrical properties of aligned nanocomposites.  相似文献   
39.
Magnetic graphitic carbon nitride nanocomposites were successfully prepared in situ and used to develop a highly sensitive magnetic solid‐phase extraction method for the preconcentration of phthalate esters such as di‐n‐butyl phthalate, butyl phthalate, dihexyl phthalate, and di‐(2‐ethyl hexyl) phthalate from water. The adsorption and desorption of the phthalate esters on magnetic graphitic carbon nitride nanocomposites were investigated and the parameters affecting the partition of the phthalate esters, such as adsorption, desorption, recovery, were assessed. Under the optimized conditions, the proposed method showed excellent sensitivity with limits of detection (S/N = 3) in the range of 0.05–0.1 μg/L and precision in the range of 1.1–2.6% (n = 5). This method was successfully applied to the analysis of real water samples, and good spiked recoveries over the range of 79.4–99.4% were obtained. This research provides a possibility to apply this nanocomposite for adsorption, preconcentration, or even removal of various carbon‐based ring or hydrophobic pollutants.  相似文献   
40.
Three mixed‐mode high‐performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine‐polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed‐mode column (C18) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed‐mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18) mixed‐mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号